|  | programmer's documentation | 
This subroutine computes the dimensionless distance to the wall solving a transport equation. More...
| Functions/Subroutines | |
| subroutine | distyp (itypfb, distpa, propce, disty) | 
This subroutine computes the dimensionless distance to the wall solving a transport equation.
This function solves the following transport equation on  :
: 
![\[ \dfrac{\partial \varia}{\partial t} + \divs \left( \varia \vect{V} \right) - \divs \left( \vect{V} \right) \varia = 0 \]](form_182.png) 
 where the vector field  is defined by:
 is defined by: 
![\[ \vect{V} = \dfrac{ \grad y }{\norm{\grad y} } \]](form_184.png) 
 The boundary conditions on  read:
 read: 
![\[ \varia = \dfrac{u_\star}{\nu} \textrm{ on walls} \]](form_185.png) 
![\[ \dfrac{\partial \varia}{\partial n} = 0 \textrm{ elsewhere} \]](form_186.png) 
Then the dimensionless distance is deduced by:
![\[ y^+ = y \varia \]](form_187.png) 
Remarks:
| subroutine distyp | ( | integer, dimension(nfabor) | itypfb, | 
| double precision, dimension(ncelet) | distpa, | ||
| double precision, dimension(ncelet,*) | propce, | ||
| double precision, dimension(ncelet) | disty | ||
| ) | 
| [in] | itypfb | boundary face types | 
| [in] | distpa | tab des distances a la paroi | 
| [in] | propce | physical properties at cell centers | 
| [out] | disty | dimensionless distance   | 
 1.8.3.1
 1.8.3.1